Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry
نویسندگان
چکیده
Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole-cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+ ] measurements, we also employed life-time imaging of the Ca2+ indicator Oregon Green BAPTA-1. We found that dopamine triggered a dose-dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below-baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine-induced [Ca2+ ] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher-threshold dopamine-induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter-dopamine-could either elevate or decrease astrocyte [Ca2+ ] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+ ] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447-459.
منابع مشابه
From Pathology to Physiology of Calcineurin Signalling in Astrocytes
Astrocytes perform fundamental housekeeping functions in the central nervous system and through bidirectional communication with neurons are thought to coordinate synaptic transmission and plasticity. They are also renowned actors in brain pathology. Reactive gliosis and neuroinflammation are featured by many (if not all) acute and chronic neurodegenerative pathologies including Alzheimer’s dis...
متن کاملDopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens.
The release of dopamine (DA) in the nucleus accumbens (NAc) is thought to be critical for mediating natural rewards as well as for the reinforcing actions of drugs of abuse. DA and amphetamine depress both excitatory and inhibitory synaptic transmission in the NAc by a presynaptic D1-like DA receptor. However, the mechanisms of depression of excitatory and inhibitory synaptic transmission appea...
متن کاملPlasticity of first-order sensory synapses: interactions between homosynaptic long-term potentiation and heterosynaptically evoked dopaminergic potentiation.
Persistent potentiations of the chemical and electrotonic components of the eighth nerve (NVIII) EPSP recorded in vivo in the goldfish reticulospinal neuron, the Mauthner cell, can be evoked by afferent tetanization or local dendritic application of an endogenous transmitter, dopamine (3-hydroxytyramine). These modifications are attributable to the activation of distinct intracellular kinase ca...
متن کاملHeterogeneous effects of dopamine on highly localized, voltage-induced Ca2+ accumulation in identified motoneurons.
Modulation of synaptic transmission is a major mechanism for the functional reconfiguration of neuronal circuits. Neurotransmitter release and, consequently, synaptic strength are regulated by intracellular Ca(2+) levels in presynaptic terminals. In identified neurons of the lobster pyloric network, we studied localized, voltage-induced Ca(2+) accumulation and its modulation in varicosities on ...
متن کاملNorepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumati...
متن کامل